Motivic height zeta functions
نویسندگان
چکیده
منابع مشابه
Motivic Igusa Zeta Functions
Let p be a prime number and let K be a finite extension of Qp. Let R be the valuation ring of K, P the maximal ideal of R, and K̄ = R/P the residue field of K. Let q denote the cardinality of K̄, so K̄ ≃ Fq. For z in K, let ord z denote the valuation of z, and set |z| = q . Let f be a non constant element of K[x1, . . . , xm]. The p-adic Igusa local zeta function Z(s) associated to f (relative to ...
متن کاملMotivic Zeta Functions of Motives
LetM be a tensor category with coefficients in a fieldK of characteristic 0, that is, a K-linear pseudo-abelian symmetric monoidal category such that the tensor product ⊗ of M is bilinear. Then symmetric and exterior powers of an object M ∈ M make sense, by using appropriate projectors relative to the action of the symmetric groups on tensor powers of M . One may therefore introduce the zeta fu...
متن کاملIgusa zeta functions and motivic generating series
Proefschrift ingediend tot het behalen van de graad van Doctor in de Wetenschappen december 2004 ii Introduction Let f be a polynomial in Z[x], x = (x 1 ,. .. , x m), defining a hypersurface X 0 in A m Z. Igusa's Monodromy Conjecture predicts an intriguing relationship between the arithmetic properties of f , and the topology of the (not necessarily reduced) complex hypersurface X 0 = X 0 × Spe...
متن کاملMotivic Zeta Functions for Curve Singularities
Let X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring OP,X at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if OP,X is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré se...
متن کاملMotivic Zeta Functions of Abelian Varieties, and the Monodromy Conjecture
We prove for abelian varieties a global form of Denef and Loeser’s motivic monodromy conjecture. More precisely, we prove that for any abelian C((t))-variety A, its motivic zeta function has a unique pole at Chai’s base change conductor c(A) of A, and that the order of this pole equals one plus the potential toric rank of A. Moreover, we show that for any embedding of Ql in C, the value exp(2πi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Mathematics
سال: 2016
ISSN: 1080-6377
DOI: 10.1353/ajm.2016.0002